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PREFACE

Attempts to quantize gravity started from the 1960s and continue until now.
However, in the framework of Einstein’s theory, quantization of gravity did
not go well because it does not become renormalizable in the standard way
applied to other ordinary fields. Attempts were made to modify Einstein’s
theory to render it possible, but another difficulty known as ghost problem
appeared, and eventually the attempt to quantize gravity with the standard
field theory methods has gone away. After the 1980s, methods that do not
depend on quantum field theory like string theory and loop quantum grav-
ity have become mainstream. Many of books published in this research are
about these theories. However, even though these theories have been stud-
ied for many years, realistic predictions that can explain briefly the current
universe are not derived yet. Now is a good time to revisit the problem of
quantization of gravity by returning to the traditional method again.

In this book, I will describe a renormalizable quantum gravity formu-
lated with incorporating a new technique based on conformal field theory
which recently has made prominent progress. Conformal invariance here
appears as a gauge symmetry that gives a key property of quantum gravity
known as the background-metric independence. Due to the presence of this
symmetry, the theory becomes free from the problem of spacetime singular-
ity, and thus from the information loss problem, namely the ghost problem
as well. Furthermore, I will give a new scenario of the universe that evolves
from quantum gravity world to the current classical world through the space-
time phase transition, including inflation driven by quantum gravity effects
only.

This book also includes descriptions of recent developments in confor-
mal field theory, renormalization theory in curved space, and conformal
anomalies related thereto, almost of which do not found in other books.
In addition, it includes review on evolution equations of the universe that is
the foundation of modern cosmology necessary to understand results of the
CMB experiments such as WMAP. Furthermore, it will be briefly shown
that there is a noticeable relationship between the quantum gravity and a
random lattice model that is based on the dynamical triangulation method
known as another description of the background free property. I would like
to describe these topics by taking enough pages as a latest advanced text-
book for leading to this new area of quantum field theory that developed
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CHAPTER ONE

INTRODUCTION

The elementary particle picture represented by an ideal point without spread-
ing is a concept incompatible with Einstein’s theory of gravity.1 Because
such an object is nothing other than a black hole in terms of the theory
of gravity. If its mass m is smaller than the Planck mass mpl, the Comp-
ton wavelength which gives a typical fluctuation size of particles becomes
larger than the horizon size of the mass m, hence it can be approximated
as a particle. However, in the world beyond the Planck scale, such an ap-
proximation does not hold because particle information is confined inside
the horizon (see Fig. 1-1).

m < mpl m > mpl

Figure 1-1: The Compton wavelength of mass m is given by λ ∼ 1/m, while
particle’s horizon size (dotted line) is rg ∼ m/m2

pl. Therefore, λ < rg for m >

mpl, as shown on the right, and information on such an elementary excitation is
confined inside the horizon and lost. Hence, in the world beyond the Planck scale,
normal particle picture is no longer established.

The goal of quantum gravity is to reveal a high energy physics beyond
the Planck scale. While particles live in spacetime, gravity rules the space-
time itself, and the difference between their roles stands out there. Quantum
fluctuations of gravity become large, so that the concept of time and distance
will be lost. Quantization of the spacetime itself is required to describe such
a world where the image of particles moving in a specific spacetime is bro-
ken.

One way to resolve the problem mentioned above is to realize such a

1 The original paper is A. Einstein, Die Grundlage der allgemeinen
Relativitätstheorie, Annalen der Phys. 49 (1916) 769.



2 Chapter One

quantum spacetime where the scale itself does not exist. It can be repre-
sented as gauge equivalence between spacetimes with different scales. This
property is called the background-metric independence. In this book, as a
theory with such a property, we will present a renormalizable quantum field
theory, called the asymptotically background-free quantum gravity, whose
ultraviolet limit is described as a special conformal field theory that has con-
formal invariance as a gauge symmetry.

Academic Interests

From observations of the cosmic microwave background (CMB) radiation
by Wilkinson Microwave Anisotropies Probe (WMAP), which is an astro-
nomical satellite launched from the NASA Kennedy Space Center in 2001,
cosmological parameters were determined with high precision and the the-
ory of inflation which suggests that a rapid expansion occurred in the early
stage of the universe was strongly supported. On the other hand, there are
still many simple and fundamental questions left, for example, why the uni-
verse is expanding or what is the source of repulsive force that ignites infla-
tion.

Interpreting the inflation theory naturally, the universe has expanded
about 1060 times from the birth to the present. This means that the larger
size than a cluster of galaxies was within the Planck length lpl before infla-
tion begins. It suggests that traces of quantum fluctuations of gravity in the
creation period of the universe are recorded in the CMB anisotropy spectrum
observed by WMAP.

Cosmic expansion, the big bang, creation of the primordial fluctuations,
and so on, it seems to be natural to consider that their origin is in quantum
effects of gravity. Quantum gravity is expected as a necessary physics to
understand the history of the universe from the birth of spacetime to the
present. The ultimate goal of this book is to explain the spectrum of CMB
using the asymptotically background-free quantum gravity. Recent studies
have revealed that we can explain a number of observed facts well if con-
sidering that a spacetime phase transition suggested by this theory as the big
bang occurred at 1017GeV.

Historical Background

Einstein’s theory of gravity has many properties unfavorable in constructing
its quantum theory, for examples, the Einstein-Hilbert action given by the
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Ricci scalar curvature is not positive-definite, and the Newton coupling con-
stant has dimensions so that the theory becomes unrenormalizable. How-
ever, renormalization itself is not an idea contradictory to diffeomorphism
invariance, or invariance under general coordinate transformations, which is
the basis of the gravity theory.

In the early studies of the 1970s, it was considered that renormalizable
quantum gravity could be obtained by simply adding fourth-order derivative
gravitational actions to the Einstein-Hilbert action. It is because due to the
fact that the gravitational field is dimensionless unlike other known fields,
not only the coupling constant becomes dimensionless, but also the action
can be made positive-definite. Furthermore, when including the Riemann
curvature tensor in the action, spacetime singularities can be removed quan-
tum mechanically because the action diverges for such field configurations.

However, with methods of treating all modes of the gravitational field
perturbatively, we could not prevent undesirable gauge-invariant ghosts from
appearing as asymptotic fields. It is the problem of the so-called massive
graviton with negative metric.2 Eventually, the attempt to quantize gravity
with standard methods of quantum field theory had gone away, and after the
1980s, methods that do not use quantum field theory have become main-
stream. Actually, there are many studies on quantum gravity, but there are
few ones that have directly performed quantization of the gravitational field.

The purpose of this book is to return to the traditional method of quan-
tum field theory again and propose a new approach to renormalizable quan-
tum theory of gravity. In order to solve the problems, we introduce a non-
perturbative technique based on conformal field theory which has recently
made remarkable progress. As the result, the particle picture propagating in
a specific background will be discarded.

A significant progress in methods to quantize gravity was made in the
latter half of the 1980s. That is the discovery of an exact solution of two-
dimensional quantum gravity. The major difference from the conventional
quantum gravity mainly studied from the 1970s to the early 1980s was that
it correctly took in contributions from the path integral measure and treated
the conformal factor in the metric tensor field strictly. This study indicated

2 There is a work on the unitarity issue by T. Lee and G. Wick, Nucl. Phys, B9
(1969) 209, in which they proposed an idea that considering a full propagator in-
cluding quantum corrections, a real pole representing the existence of ghosts disap-
pears and moves to a pair of complex poles so that ghosts do not appear in the real
world. For its application to quantum gravity, see E. Tomboulis, Phys. Lett. 70B
(1977) 361 and references in Bibliography. For more detailed explanations, see the
end of Chapter 7. However, this idea cannot be applied to the ultraviolet limit where
interactions turn off.
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that diffeomorphism invariance in quantum theory should be handled more
carefully than that in classical theory.

The essence of this approach is that diffeomorphism invariance involves
conformal invariance, thus the quantum gravity theory is formulated as a
certain conformal field theory defined on any background spacetime. The
difference from normal conformal field theory is that conformal invariance
is a gauge symmetry, namely BRST symmetry.3 In normal conformal field
theory, only the vacuum is conformally invariant, whereas in the quantum
gravity fields must be conformally invariant as well. All of the theories with
different backgrounds connected each other by conformal transformations
become gauge-equivalent, thus the background-metric independence is re-
alized. This is called the BRST conformal invariance. It represents that the
so-called Wheeler-DeWitt algebra is realized at the quantum level.4

Developing this method in four dimensions, we have formulated a new
renormalizable quantum theory of gravity. The gravitational field is then
decomposed into three parts: the conformal factor defined in an exponen-
tial, the traceless tensor field, and a background metric. By quantizing the
conformal factor in a non-perturbative way, the background-metric indepen-
dence is strictly realized as the BRST conformal invariance in the ultraviolet
limit. On the other hand, dynamics of the traceless tensor field which can-
not be ignored in four dimensions is handled perturbatively by adding the
fourth-order derivative Weyl action. Since the coupling constant becomes
dimensionless, the theory becomes renormalizable.

In conventional quantum field theories based on Einstein’s theory of
gravity, the Planck scale is usually regarded as an ultraviolet cutoff. Hence,
problems of spacetime singularities, ultraviolet divergences, and even the
cosmological constant are substantially avoided. On the other hand, this
new renormalizable quantum gravity does not require such an ultraviolet
cutoff, because the beta function of the gravitational coupling constant be-
comes negative, like in quantum chromodynamics (QCD). Therefore, we

3 BRST is an abbreviation for Becchi-Rouet-Stora-Tyutin which arranged the names
of four discovers. The original papers are C. Becchi, A. Rouet, and R. Stora, Renor-
malization of the Abelian Higgs-Kibble Model, Comm. Math. Phys. 42 (1975)
127; Renormalization of Gauge Theories, Ann. Phys. 98 (1976) 287, and I. Tyutin,
Lebedev preprint FIAN, 1975. See T. Kugo and I. Ojima, Local Covariant Operator
Formalism of Non-Abelian Gauge Theories and Quark Confinement Problem, Prog.
Theor. Phys. Suppl. 66 (1979) 1 and reference books on quantum field theory in
Bigliography.
4 At the classical Poisson bracket level, the Wheeler-DeWitt algebra holds for ar-
bitrary diffeomorphism invariant theory, but for the algebra to close at the quantum
level, the theory is constrained, so that the gravitational action is determined tightly.
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can describe a world beyond the Planck scale.
Furthermore, the massive graviton mode becomes unphysical in this ap-

proach, because a quadratic term of the field giving mass to this mode is not
gauge invariant due to the existence of the exponential conformal factor in
the Einstein-Hilbert action. Not only that, the BRST conformal symmetry
shows that all modes in the fourth-order derivative gravitational field are not
gauge invariant after all even in the ultraviolet limit.

As a theoretical background in which this four-dimensional quantum
gravity was devised, there is a work of numerical calculations by the dy-
namical triangulation method.5 It is a random lattice model in which the
two-dimensional model (matrix model) is generalized to four dimensions,
and the simulation result strongly suggested that scalar fluctuations are more
dominant than tensor fluctuations. From this research result, we came up
with this quantization method which treats only the traceless tensor field
perturbatively.

After that, the first observation result of WMAP was released in 2003,
and it was indicated that a scale-invariant scalar fluctuation dominates in
the early universe. At the same time, the existence of a new scale close
to the Planck length was suggested. At first, we could not imagine that a
wavelength of observed fluctuations about 5000Mpc which corresponds to
the size of the universe is related with the smallest length scale among the
known ones, but it can be understood when we consider that the universe
expanded about 1060 times from its birth to the present, including an in-
flationary period and the subsequent 13.7 billion years, predicted from a
typical scenario of the inflation theory. From the consideration of this new
scale, the idea of quantum gravity inflation was born.

Excellent Points of The Theory

A theoretical superiority of the BRST conformal field theory is that what-
ever background metric we choose, as far as it is conformally flat, the theory
does not lose its generality. With this theory as the core, the renormaliz-
able quantum gravity can be constructed as a quantum field theory in the
flat background as usual. Dynamics that represents a deviation from the
conformal invariance is controlled by only one dimensionless gravitational

5 See S. Horata, H. Egawa, and T. Yukawa, Clear Evidence of A Continuum Theory
of 4D Euclidean Simplicial Quantum Gravity, Nucl. Phys. B (Proc. Suppl.) 106
(2002) 971; S. Horata, H. Egawa, and T. Yukawa, Grand Canonical Simulation of
4D Simplicial Quantum Gravity , Nucl. Phys. B (Proc. Suppl.) 119 (2003) 921. See
also the fifth section of Appendix D and the author’s review article in Bibliography.
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coupling constant whose beta function becomes negative.
The renormalization theory is formulated using dimensional regulariza-

tion, which is a regularization method that can calculate higher loop quan-
tum corrections while preserving diffeomorphism invariance. The long-
standing problem that the form of fourth-order gravitational actions can-
not be fixed from classical diffeomorphism invariance alone is settled at
the quantum level, that is, it is determined by not only imposing the Wess-
Zumino integrability condition but also using a certain new renormalization
group equation.

The fact that the beta function is negative means that the theory can
be defined correctly in the ultraviolet limit. Unlike conventional quantum
field theory, however, it does not indicate that the flat spacetime in which
asymptotic fields can be defined is realized. This is because the conformal
factor still fluctuates non-perturbatively so that spacetime is fully quantum
mechanical. Therefore, the traditional S-matrix is not defined as a physical
quantity. In this book, we refer to this behavior as “asymptotic background
freedom”, in distinction from the conventional asymptotic freedom.

It also suggests the existence of a new dynamical infrared energy scale of
quantum gravity denoted by ΛQG here, like ΛQCD in QCD.6 At sufficiently
high energy beyond ΛQG, tensor fluctuations become smaller, while scalar
fluctuations by the conformal factor dominate. Below ΛQG, such conformal
dynamics disappears. Thus, this scale divides quantum spacetime filled with
conformal fluctuations of gravity from the current classical spacetime with-
out conformal invariance. The more detailed physical implications indicated
by this scale are as follows.

Inflation and spacetime phase transition If setting the magnitude
relation between the Planck mass mpl and the dynamical scale ΛQG as
mpl > ΛQG, there is an inflationary solution, then evolution of the early
universe can be divided into three eras separated by these two scales. At
high energy far beyond the Planck scale it is described as a conformally in-
variant spacetime where quantum scalar fluctuations of the conformal factor
dominate. The conformal invariance starts breaking in the vicinity of the
Planck scale, and gradually shifts to the era of inflation. The inflationary
era drastically ends at ΛQG where the conformal invariance loses its valid-
ity completely. At this point, the universe is expected to make a transition

6 The existence of such a scale is a characteristic of renormalizable quantum field
theory, which is a scale that does not exist in a manifestly finite continuum theory
like string theory. It is also characterized by the fact that the effective action has a
nonlocal form, and this point is also different from a manifestly finite theory which
generally gives a local effective theory.
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to the classical Friedmann spacetime in which long distance correlation has
been lost. If we choose this scale as 1017GeV, we can explain the CMB
observation results well.

One of the excellent points in this inflationary scenario is that it can ex-
plain the evolution of the universe using the dynamics of the gravitational
field alone without introducing a phenomenological scalar degree of free-
dom called the inflaton.7 Interactions between the conformal-factor field and
matter fields open through conformal anomaly, and become strong rapidly
near ΛQG. The big bang is caused by that a fourth-order derivative scalar
degree of freedom in the conformal factor changes to matter fields imme-
diately at the time of the spacetime phase transition. Hence, it is suggested
that quantum fluctuations of gravity are the source of everything. The origin
of primordial fluctuations necessary for explaining the structure formation
of the universe is given by a scale-invariant scalar spectrum predicted from
conformal invariance.

Existence of physical minimum length The dynamical scale ΛQG

separating quantum and classical spacetimes implies that there is no concept
of distance shorter than the correlation length ξΛ = 1/ΛQG because space-
time totally fluctuates there. In this sense, ξΛ denotes a minimum length we
can measure. Thus, spacetime is practically quantized by ξΛ, without dis-
cretizing it explicitly, that is, without breaking diffeomorphism invariance.
Excitations in quantum gravity would be given by the mass of order ΛQG.

Although we do not know how large our universe is, at least most of
the range that we are looking at today falls within the minimum length be-
fore inflation, because the present Hubble distance is given by the order of
1059× ξΛ, as mentioned before. That is to say, we can consider that the uni-
verse we are observing now was born from a “bubble” of quantum gravity
fluctuations. This is the reason why the primordial spectrum of the universe
is almost scale invariant.

On the other hand, since correlations larger than ξΛ disappear, the sharp
fall-off observed in large angular components of the CMB anisotropy spec-
trum can be explained by this length scale.

7 On the other hand, Einstein’s theory of gravity is a theory that matter density
determines the structure of spacetime. In other words, the current spacetime cannot
be produced from the absence of matters. Therefore, the inflation model based on
Einstein’s theory of gravity has to introduce a scalar field as a source of all matter
fields, but it is unconvincing that elementary particles with a theoretical background
such as gauge principles and renormalizability are created from a scalar field that
does not have these properties.
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New approach to unitarity problem As stated at the beginning, in
gravity theories based on the Einstein-Hilbert action, an elementary exci-
tation that has energy beyond the Planck mass becomes a black hole, and
thus unitarity is broken. On the other hand, the asymptotically background-
free theory indicates that spacetime configurations where the Weyl curvature
tensor disappears dominate at high energy beyond ΛQG. Therefore, space-
time configuration where the Riemann curvature tensor diverges like the
Schwarzschild solution is excluded at the quantum level.8 The existence of
such a singular point is also denied by the realization of the BRST conformal
invariance representing the background-metric independence.

Since singularities are eliminated, it is possible to discuss the problem of
unitarity non-perturbatively. Algebraically, conformal invariance becomes
important. The unitarity in conformal field theory is that the Hermitian na-
ture of fields is preserved even in correlation functions. It is expressed as
the conditions that not only two-point functions are positive-definite but also
operator product expansion coefficients are real.9

The BRST conformal invariance gives far stronger constraints on the the-
ory than conventional conformal invariance. Negative-metric ghost modes
included in the fourth-order derivative gravitational field are necessary for
the conformal algebra to close, but they are not gauge invariant themselves,
so that they do not appear in the real world. Physical operators are given by
real primary scalar composite fields with a specific conformal dimension,
whereas fields with tensor indices become unphysical. Since the whole ac-
tion is positive-definite, the stability of the path integral is guaranteed, and
thus the Hermitian nature of the physical operators will be retained.10

8 Since the Weyl action diverges, singular configurations are obviously unphysical,
whereas in Einstein’s gravity theory such a singularity cannot be eliminated because
the Einstein-Hilbert action given by the Ricci scalar vanishes, that is, it is physical.
9 Since the action is often unknown in conformal field theory, such conditions will
be imposed (see Chapters 2 and 3). If the action is known, it can be easily under-
stood in statistical mechanics by considering Wick-rotated Euclidean space. If the
Euclidean action I is positive-definite, the path integral with weight e−I is correctly
defined and thus reality of fields is preserved. If the action is not bounded from
below, the path integral diverges and thus the field reality is sacrificed in order to
regularize it.
10 Each mode in the fourth-order gravitational field is not a physical quantity, thus
as long as considering correlation functions of physical fields, the positivity of the
whole action expressed by the original gravitational field is essential (see Footnote
9).
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Outline of The Book

In Chapters 2 and 3, we explain the basis of conformal field theory and
recent developments. The basis of two-dimensional conformal field theory
is summarized in Chapter 4. In Chapter 5, we describe conformal anomaly
involved deeply in the construction of quantum gravity. Chapter 6 is devoted
to two-dimensional quantum gravity, which is the simplest theory with the
BRST conformal invariance.

In Chapters 7 and 8, we formulate the BRST conformally invariant quan-
tum gravity in four dimensions, which is one of the main subjects of this
book, and construct physical field operators and physical states. As a first
step to define renormalizable quantum theory of gravity by using dimen-
sional regularization, we examine quantum field theory in curved space-
time in Chapter 9. The form of gravitational counterterms and conformal
anomalies is then determined using an advanced technique of renormal-
ization group equations applied to composite fields. Based on this result,
we formulate the renormalizable asymptotically background-free quantum
gravity in Chapter 10.

In the last four chapters we will discuss evolution of the universe that
the quantum gravity suggests. In order to show why we can consider that
its traces remains today, we first explain the Friedmann universe in Chapter
11, then present a model of inflation induced by quantum gravity effects in
Chapter 12. Furthermore, in Chapter 13, we explain in detail cosmological
perturbation theory describing time evolution of fluctuations. In Chapter 14,
we apply it to the quantum gravity cosmology and examine time evolution of
quantum gravity fluctuations in the inflationary background, then show that
the amplitudes reduce during inflation. From quantum gravity spectra given
before the Planck time, we derive primordial power spectra right after the
spacetime phase transition, and with them as initial spectra of the Friedmann
universe, the CMB anisotropy spectra are calculated and compared with
experimental data.

Each chapter of the appendix supplements useful formulas for gravita-
tional fields and also useful knowledge that will help understanding although
it is slightly out of the main subject.

Finally, from the author’s review article listed in Bibliography, extract
the following passage:

The wall of Planck scale reminds us the wall of sound speed. When an
airplane speeds up and approaches to the sound speed, it faces violent vibra-
tions due to the sound made by the airplane itself and sometimes breaks the
airplane into pieces. People of old days thought that the sound speed is the
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unpassable wall. However, we know now once we pass the wall with durable
body, a peaceful space without sounds spreads about us. Similarly, we might
think that the Planck scale is the wall that we can never pass. However, once
we go beyond the Planck scale, there is no singularity, but a harmonious
space of conformal symmetry.

The thought of this research is summarized in this sentence.



CHAPTER TWO

CONFORMAL FIELD THEORY IN
MINKOWSKI SPACE

As places where conformal field theory appears, non-trivial fixed points in
quantum field theories and critical points in statistical models are widely
known. In addition, we will show that an ultraviolet limit of quantum gravity
is described as a certain conformal field theory in this book.

These theories will be discussed in Minkowski space or Euclidean space,
and each has advantages. First of all, the basis of conformal field theory in
Minkowski space are summarized. In this case, the procedure of quanti-
zation, the Hamiltonian operator, the nature of field operators such as Her-
miticity, etc. are more clear than quantum field theory in Euclidean space.
Conformal field theory in Euclidean space is basically considered to be ob-
tained by analytic continuation from Minkowski space.

On the other hand, in the case where an action or a (non-perturbative)
quantization method is not clear, it is easier to discuss in Euclidean space,
because we can avoid divergences specific to Minkowski space. In addition,
there are advantages such as structures of correlation functions, correspon-
dences between states and operators, and so on become clearer, and also cor-
respondences with statistical mechanics becomes easy to understand. Con-
formal field theory in Euclidean space is discussed in the next chapter.

Hereinafter, when describing the basic properties of conformal field the-
ory, we describe them in any D dimensions. When presenting specific ex-
amples, calculations are done in four dimensions for simplicity.

Conformal Transformations

Conformal transformations are coordinate transformations in which when
transforming coordinates to xµ → x′µ, a line element changes as

ηµνdx
µdxν → ηµνdx

′µdx′ν = Ω2(x)ηµνdx
µdxν , (2-1)

where Ω is an arbitrary real function and the Minkowski metric is ηµν =
(−1, 1, · · · , 1). Rewriting the right-hand side, the conformal transformation
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is expressed as

ηµν
∂x′µ

∂xλ
∂x′ν

∂xσ
= Ω2(x)ηλσ.

The Ω = 1 case corresponds to the Poincaré transformation.
Conformal transformations are defined only on the background metric

ηµν , and under the transformation this metric tensor itself does not change.
On the other hand, diffeomorphism is a coordinate transformation in which
the metric tensor is regarded as a field to transform together in order to
preserve the line element as a scalar quantity, thus it has to be distinguished
from the conformal transformation.1 Below, all contractions of indices of
tensor fields are done with the background metric ηµν .

Considering an infinitesimal conformal transformation xµ → x′µ =
xµ + ζµ, we find from the above equation that ζµ must satisfy

∂µζν + ∂νζµ −
2

D
ηµν∂λζ

λ = 0. (2-2)

This is called the conformal Killing equation, and ζλ is called the conformal
Killing vector. The arbitrary function is then given by

Ω2 = 1 +
2

D
∂λζ

λ. (2-3)

Deforming the conformal Killing equation (2-2), we get[
ηµν∂

2 + (D − 2)∂µ∂ν
]
∂λζ

λ = 0.

Furthermore, since (D − 1)∂2∂λζ
λ = 0 is obtained from the trace of this

expression, we get ∂µ∂ν∂λζλ = 0 for D > 2.2 Solving the equation with
this in mind yields (D + 1)(D + 2)/2 solutions. They correspond to D
translations, D(D − 1)/2 Lorentz transformations, one dilatation, D spe-
cial conformal transformations, denoted by ζλT,L,D,S , respectively, which
are given as follows:

(ζλT )µ = δλµ, (ζλL)µν = xµδ
λ
ν − xνδλµ,

ζλD = xλ, (ζλS)µ = x2δλµ − 2xµx
λ. (2-4)

1 Considered the metric as a field and combined with diffeomorphism, the conformal transfor-
mation can be expressed as the Weyl rescaling of the metric field, but in this and the next two
chapters it is not considered.
2 In D = 2, the condition reduces to ∂2∂λζλ = 0, and the number of the conformal Killing
vectors becomes infinite.
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The indices µ, ν here represent the degrees of freedom of ζλT,L,S . The first
two correspond to isometry transformations that satisfies the Killing equa-
tion ∂µζν + ∂νζµ = 0, namely the Poincaré transformations.

Finite conformal transformations for dilatation and special conformal
transformation are given by

xµ → x′µ = λxµ, xµ → x′µ =
xµ + aµx2

1 + 2aµxµ + a2x2
,

respectively. In addition to these, we introduce conformal inversion

xµ → x′µ =
xµ

x2
, (2-5)

which is an important transformation that can be used in place of special
conformal transformation. By combining conformal inversion and transla-
tion, special conformal transformation can be derived as

xµ → xµ

x2
→ xµ

x2
+ aµ →

xµ

x2 + aµ(
xµ

x2 + aµ
)2 =

xµ + aµx2

1 + 2aµxµ + a2x2
.

Conformal Algebra and Field Transformation Law

Let Pµ, Mµν , D, and Kµ be generators of translation, Lorentz transforma-
tion, dilatation and special conformal transformation, respectively.3 These
(D+1)(D+2)/2 infinitesimal conformal transformation generators satisfy
the following SO(D, 2) algebra:4

[Pµ, Pν ] = 0, [Mµν , Pλ] = −i (ηµλPν − ηνλPµ) ,
[Mµν ,Mλσ] = −i (ηµλMνσ + ηνσMµλ − ηµσMνλ − ηνλMµσ) ,

[D,Pµ] = −iPµ, [D,Mµν ] = 0, [D,Kµ] = iKµ,

[Mµν ,Kλ] = −i (ηµλKν − ηνλKµ) , [Kµ,Kν ] = 0,

[Kµ, Pν ] = 2i (ηµνD +Mµν) . (2-6)

3 In this book, the same symbol D as spacetime dimensions is used for the generator of
dilatation. They can be readily distinguished from the context.
4 In two dimensions, the SO(2, 2) conformal algebra is extended to the infinite dimensional
Virasoro algebra and what is called the central charge appears, but such a central extension
does not exist in the conformal algebra of D > 2.
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A subalgebra SO(D − 1, 1) composed of the generators of translation and
Lorentz transformation is the Poincaré algebra. Hermiticity of the genera-
tors is defined by

P †
µ = Pµ, M†

µν =Mµν , D† = D, K†
µ = Kµ.

The conformal algebra can be represented collectively using the genera-
tor of SO(D, 2) denoted by Jab as

[Jab, Jcd] = −i (ηacJbd + ηbdJac − ηbcJad − ηadJbc) , (2-7)

where the metric is set to be ηab = (−1, 1, . . . , 1,−1), numbering as a, b =
0, 1, 2, . . . , D,D + 1. The generator is antisymmetric Jab = −Jba and
satisfies Hermiticity J†

ab = Jab. Indeed, the conformal algebra (2-6) is
obtained by choosing the spacetime indices as µ, ν = 0, 1, . . . , D − 1 and
writing the generators as

Mµν = Jµν , D = JD+1D,

Pµ = JµD+1 − JµD, Kµ = JµD+1 + JµD.

Fields that transform regularly under conformal transformations are par-
ticularly called primary fields. We here consider a symmetric traceless ten-
sor fieldOµ1···µl representing a field of integer spin l.5 Let ∆ be a conformal
dimension and the field satisfies Hermiticity

O†
µ1···µl(x) = Oµ1···µl(x).

A primary scalar field is defined so that it transforms under conformal trans-
formations as

O′(x′) = Ω−∆(x)O(x).

Since Oµ1···µl(x)dx
µ1 · · · dxµl transforms as a scalar quantity of conformal

dimension ∆ − l, the transformation law of a primary tensor field is then
given by

O′
µ1···µl(x

′) = Ωl−∆(x)
∂xν1

∂x′µ1
· · · ∂x

νl

∂x′µl
Oν1···νl(x). (2-8)

5 In D = 4, this is a tensor field corresponding to the j = j̃ = l/2 case in the
(j, j̃) representation of the Lorentz group SO(3, 1), which can be expressed as Oµ1···µl =

(σµ1 )
α1α̇1 · · · (σµl )αlα̇lOα1···αlα̇1···α̇l . In addition, as fields with j ̸= j̃, spinor fields of

(1/2, 0) and (0, 1/2), Rarita-Schwinger fields of (1, 1/2) and (1/2, 1), antisymmetric tensor
fields of (1, 0) and (0, 1), and so on are widely known.
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Denoting a vector representation of the orthogonal group SO(D − 1, 1)
asDµν , Jacobian of the transformation is decomposed in the form ∂xν/∂x′µ

= Ω−1(x)D ν
µ (x). Here, a primary field of arbitrary spin is simply denoted

as Oj(x) and the representation matrix acting on it is written as R[D]jk.
The conformal transformation can then be expressed with a combination of
scale transformations and rotations as O′

j(x
′) = Ω−∆(x)R[D(x)] kj Ok(x).

If the vacuum |0⟩ is conformally invariant, correlation functions of these
operators satisfy

⟨0|Oj1(x1) · · ·Ojn(xn)|0⟩ = ⟨0|O′
j1(x1) · · ·O

′
jn(xn)|0⟩, (2-9)

where note that the argument of the field on the right-hand side is xj , which
is the same as the left-hand side.

The conformal transformation law under an infinitesimal change xµ →
x′µ = xµ + ζµ is derived by expanding δζOj(x) ≡ Oj(x)− O′

j(x) by ζµ.
Noting that O′

j(x
′ = x+ ζ) = O′

j(x) + ζµ∂µOj(x), D µ
ν = δ µν − (∂νζ

µ −
∂µζν)/2, and (2-3), an infinitesimal conformal transformation of primary
tensor fields is given by

δζOµ1···µl(x) =

(
ζλ∂λ +

∆

D
∂λζ

λ

)
Oµ1···µl(x)

+
1

2

l∑
j=1

(
∂µjζ

λ − ∂λζµj
)
Oµ1···µj−1λµj+1···µl(x)

from the transformation law (2-8).
The infinitesimal transformation is expressed as a commutator between

the generator and the field operator as

δζOµ1···µl(x) = i [Qζ , Oµ1···µl(x)] ,

where Qζ is a generic name of (D+1)(D+2)/2 generators for the confor-
mal Killing vector ζλ. By substituting the concrete forms of the conformal
Killing vectors ζλT,L,D,S (2-4), we obtain the following transformation laws:

i [Pµ, Oλ1···λl(x)] = ∂µOλ1···λl(x),

i [Mµν , Oλ1···λl(x)] = (xµ∂ν − xν∂µ − iΣµν)Oλ1···λl(x),

i [D,Oλ1···λl(x)] = (xµ∂µ +∆)Oλ1···λl(x),

i [Kµ, Oλ1···λl(x)] =
(
x2∂µ − 2xµx

ν∂ν − 2∆xµ + 2ixνΣµν
)
Oλ1···λl(x),

(2-10)
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where spin term is defined by

ΣµνOλ1···λl = i

l∑
j=1

(
ηµλjδ

σ
ν − ηνλjδσµ

)
Oλ1···λj−1σλj+1···λl .

If defining a spin matrix as ΣµνOλ1···λl = (Σµν)
σ1···σl

λ1···λl Oσ1···σl , then
it satisfies the same algebra as the Lorentz generator Mµν . In the case of a
vector field, it is given by (Σµν)

σ
λ = i(ηµλδ

σ
ν − ηνλδ σµ ), and the general

formula of l is represented using it as

(Σµν)
σ1···σl

λ1···λl =

l∑
j=1

δ σ1

λ1
· · · δ σj−1

λj−1
(Σµν)

σj
λj

δ
σj+1

λj+1
· · · δ σlλl .

If there is an energy-momentum tensor Θµν satisfying the traceless con-
dition, the generators of conformal transformations can be expressed using
the conformal Killing vectors as

Qζ =

∫
dD−1x ζλΘλ0,

where dD−1x is the spatial volume element. Indeed, using the conformal
Killing equation (2-2) and the conservation equation ∂µΘµν = 0, we can
show that ∂ηQζ = −(1/D)×

∫
dD−1x ∂λζ

λΘµµ, thus when the energy-
momentum tensor is traceless, the time-dependence disappears and the gen-
erator is conserved. Assigning ζλT,L,D,S (2-4) to ζλ, we obtain the following
concrete expressions:

Pµ =

∫
dD−1xΘµ0, Mµν =

∫
dD−1x (xµΘν0 − xνΘµ0) ,

D =

∫
dD−1xxλΘλ0, Kµ =

∫
dD−1x

(
x2Θµ0 − 2xµx

λΘλ0
)
. (2-11)

As a simple example, calculations of the conformal algebra and the confor-
mal transformation law in the case of a quantum free scalar field are given
in the third section of Appendix B.

Finally, we give a differential equation that correlation functions satisfy.
Conformal field theory is a theory with a conformally invariant vacuum |0⟩,
and such a vacuum is defined as a state that satisfies

Qζ |0⟩ = 0, ⟨0|Qζ = 0
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for all generators Qζ (= Q†
ζ). If any n conformal fields are simply ex-

pressed as Oji (i = 1, . . . , n), correlation functions of these fields satisfy
⟨0| [Qζ , Oj1(x1) · · ·Ojn(xn)] |0⟩ = 0. Thus,

δζ⟨0|Oj1(x1) · · ·Ojn(xn)|0⟩

= i

n∑
i=1

⟨0|Oj1(x1) · · · [Qζ , Oji(xi)] · · ·Ojn(xn)|0⟩ = 0

holds. This is an infinitesimal version of (2-9). For example, let Oji be a
primary scalar field Oi with conformal dimension ∆i and consider the case
of D and Kµ as Qζ , we obtain

n∑
i=1

(
xµi

∂

∂xµi
+∆i

)
⟨0|O1(x1) · · ·On(xn)|0⟩ = 0,

n∑
i=1

(
x2i

∂

∂xµi
− 2xiµx

ν
i

∂

∂xνi
− 2∆ixiµ

)
⟨0|O1(x1) · · ·On(xn)|0⟩ = 0,

respectively, from the transformation law (2-10).

Correlation Functions and Positivity

Consider two-point correlation functions of traceless symmetric primary
tensor fields of integer spin l defined by

Wµ1···µl,ν1···νl(x− y) = ⟨0|Oµ1···µl(x)Oν1···νl(y)|0⟩. (2-12)

Letting ∆ be conformal dimension of the field, it is generally expressed as

Wµ1···µl,ν1···νl(x) = CPµ1···µl,ν1···νl(x)
1

(x2)∆

∣∣∣∣
x0→x0−iϵ

,

where C is a constant and ϵ is an infinitesimal ultraviolet cutoff. The func-
tion Pµ1···µl,ν1···νl is determined from the primary field condition.

In order to determine the form of the two-point correlation function, we
use the conformal inversion (2-5), which is expressed as

x′µ = (Rx)µ =
xµ
x2
.

This transformation gives Ω(x) = 1/x2. Since it returns to its original
form when it is operated twice, namely R2 = I , the inverse is given by
xµ = (Rx′)µ.
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Primary scalar fields are transformed under the conformal inversion as

O′(x′) = Ω−∆(x)O(x) =
(
x2
)∆

O(x).

It can be also written as O′(x) = (x2)−∆O(Rx) by returning the argument
to x. Here, we proceed with the discussion with the argument of O′ as
x′. Using this transformation law, the conformal invariance condition (2-9)
expressed as ⟨0|O′(x′)O′(y′)|0⟩ = ⟨0|O(x′)O(y′)|0⟩ yields

(x2y2)∆⟨0|O(x)O(y)|0⟩ = ⟨0|O(Rx)O(Ry)|0⟩.

Noting that

1

(Rx−Ry)2
=

x2y2

(x− y)2
, (2-13)

we find that the two-point function of the primary scalar field is given by
1/(x − y)2∆ up to an overall coefficient. Restoring the ultraviolet cutoff,
we get

⟨0|O(x)O(0)|0⟩ = C
1

(x2)∆

∣∣∣∣
x0→x0−iϵ

= C
1

(x2 + 2iϵx0)∆
,

where x0 ̸= 0 and ϵ2 is ignored. In the same way, we can determine the
form of the three- and four-point functions of the primary scalar field (see
the fourth section in Chapter 3).

Primary vector fields are transformed under conformal inversion as

O′
µ(x

′) = Ω(x)1−∆ ∂xν

∂x′µ
Oν(x) =

(
x2
)∆

I νµ (x)Oν(x),

where we introduce a function Iµν of the coordinates xµ defined by

Iµν(x) = ηµν − 2
xµxν
x2

,

which satisfies I λµ (x)Iλν(x) = ηµν and Iµµ(x) = D − 2. Therefore, the
conformal invariance condition ⟨0|O′

µ(x
′)O′

ν(y
′)|0⟩ = ⟨0|Oµ(x′)Oν(y′)|0⟩

is expressed as

(x2y2)∆I λµ (x)I σν (y)⟨0|Oλ(x)Oσ(y)|0⟩ = ⟨0|Oµ(Rx)Oν(Ry)|0⟩.

Noting that

I λµ (x)I σν (y)Iλσ(x− y) = Iµν(x− y) + 2
x2 − y2

(x− y)2

(
xµxν
x2
− yµyν

y2

)
= Iµν(Rx−Ry),


